Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80.877
Filtrar
1.
Sci Rep ; 14(1): 7794, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565625

RESUMEN

In this study, a commercial dental resin was reinforced by SiO2 nanoparticles (NPs) with different concentrations to enhance its mechanical functionality. The material characterization and finite element analysis (FEA) have been performed to evaluate the mechanical properties. Wedge indentation and 3-point bending tests were conducted to assess the mechanical behavior of the prepared nanocomposites. The results revealed that the optimal content of NPs was achieved at 1% SiO2, resulting in a 35% increase in the indentation reaction force. Therefore, the sample containing 1% SiO2 NPs was considered for further tests. The morphology of selected sample was examined using field emission scanning electron microscopy (FE-SEM), revealing the homogeneous dispersion of SiO2 NPs with minimal agglomeration. X-ray diffraction (XRD) was employed to investigate the crystalline structure of the selected sample, indicating no change in the dental resin state upon adding SiO2 NPs. In the second part of the study, a novel approach called iterative FEA, supported by the experiment wedge indentation test, was used to determine the mechanical properties of the 1% SiO2-dental resin. Subsequently, the accurately determined material properties were assigned to a dental crown model to virtually investigate its behavior under oblique loading. The virtual test results demonstrated that most microcracks initiated from the top of the crown and extended through its thickness.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , Resinas Compuestas/química , Análisis de Elementos Finitos , Nanopartículas/química , Fenómenos Mecánicos , Ensayo de Materiales
2.
PLoS One ; 19(4): e0301103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568980

RESUMEN

Birch bark tar is the most widely documented adhesive in prehistoric Europe. More recent periods attest to a diversification in terms of the materials used as adhesives and their application. Some studies have shown that conifer resins and beeswax were added to produce compound adhesives. For the Iron Age, no comparative large-scale studies have been conducted to provide a wider perspective on adhesive technologies. To address this issue, we identify adhesive substances from the Iron Age in north-eastern France. We applied organic residue analysis to 65 samples from 16 archaeological sites. This included residues adhering to ceramics, from vessel surface coatings, repaired ceramics, vessel contents, and adhesive lumps. Our findings show that, even during the Iron Age in north-eastern France, birch bark tar is one of the best-preserved adhesive substances, used for at least 400 years. To a lesser extent, Pinaceae resin and beeswax were also identified. Through statistical analyses, we show that molecular composition differs in samples, correlating with adhesive function. This has implications for our understanding of birch bark tar production, processing and mode of use during the Iron Age in France and beyond.


Asunto(s)
Adhesivos , Recubrimiento Dental Adhesivo , Adhesivos/química , Betula/química , Resinas de Plantas , Arqueología , Tecnología , Ensayo de Materiales , Cementos de Resina/química , Resinas Compuestas/química
3.
Braz Oral Res ; 38: e028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597547

RESUMEN

Acidic pH can modify the properties of repair cements. In this study, volumetric change and solubility of the ready-to-use bioceramic repair cement Bio-C Repair (BCR, Angelus, Londrina, PR, Brazil) were evaluated after immersion in phosphate-buffered saline (PBS) (pH 7.0) or butyric acid (pH 4.5). Solubility was determined by the difference in initial and final mass using polyethylene tubes measuring 4 mm high and 6.70 mm in internal diameter that were filled with BCR and immersed in 7.5 mL of PBS or butyric acid for 7 days. The volumetric change was established by using bovine dentin tubes measuring 4 mm long with an internal diameter of 1.5 mm. The dentin tubes were filled with BCR at 37°C for 24 hours. Scanning was performed with micro-computed tomography (micro-CT; SkyScan 1176, Bruker, Kontich, Belgium) with a voxel size of 8.74 µm. Then, the specimens were immersed in 1.5 mL of PBS or butyric acid at and 37 °C for 7 days. After this period, a new micro-CT scan was performed. Bio-C Repair showed greater mass loss after immersion in butyric acid when compared with immersion in PBS (p<0.05). Bio-C Repair showed volumetric loss after immersion in butyric acid and increase in volume after immersion in PBS (p<0.05). The acidic pH influenced the solubility and dimensional stability of the Bio-C Repair bioceramic cement, promoting a higher percentage of solubility and decrease in volumetric values.


Asunto(s)
Óxidos , Materiales de Obturación del Conducto Radicular , Animales , Bovinos , Solubilidad , Óxidos/química , Compuestos de Calcio/química , Microtomografía por Rayos X , Ácido Butírico , Ensayo de Materiales , Cementos Dentales/química , Cementos de Ionómero Vítreo , Concentración de Iones de Hidrógeno , Silicatos/química , Materiales de Obturación del Conducto Radicular/química
4.
Braz Oral Res ; 38: e030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597548

RESUMEN

This study aimed to evaluate volumetric polymerization shrinkage, degree of conversion and Vickers hardness of four bulk-fill resin composites light-activated with their dedicated light curing units (LCUs). Four groups were evaluated, according to the type of composite and curing mode: Tetric EvoCeram Bulk-fill (TEBO) and Tetric EvoFlow Bulk-fill (TEBF) were light-activated with Bluephase Style 20i (20s, in high-mode), while Tetric Powerfill (TEPO) and Tetric Powerflow (TEPF) were light-activated with Bluephase PowerCure (3s). Volumetric polymerization shrinkage test (n = 6) was performed in standardized box-shaped class-I cavities of extracted third molars (4 x 4 x 4 mm). Teeth were scanned before and after resin composite application by micro-computed tomography, and acquired data were evaluated with Amira software. Degree of conversion (n = 5) was evaluated at the top and bottom surfaces of composite cylindric samples (4 mm diameter, 4 mm thickness) using an FT-IR spectrometer (spectra between 1,500 and 1,800 cm-1, 40 scans at a resolution of 4 cm-1). Three Vickers indentations (50 g / 15 s), spaced 500 µm apart, were performed on the top and bottom composite surfaces and averaged. One-way ANOVA was used for data evaluation. TEPF showed the lowest volumetric polymerization shrinkage (p < 0.05), while the other composites were not significantly different within each other (p > 0.05). All materials presented a significant decrease in degree of conversion and Vickers hardness when compared top to bottom surfaces (p < 0.05). Bottom to top surface ratios for degree of conversion ranged from 0.8 (TEBO and TEPO) to 0.9 (TEBF and TEPF), and from 0.4 (TEPO) to 0.7 (TEBF and TEPF) for hardness. In conclusion, resinous materials present a decrease in hardness and degree of conversion from top to bottom even when a higher power is used, while the flowable material TEPF showed the lowest volumetric shrinkage values compared to the other materials.


Asunto(s)
Resinas Compuestas , Caries Dental , Humanos , Dureza , Microtomografía por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Ensayo de Materiales , Polimerizacion , Propiedades de Superficie , Materiales Dentales
5.
Clin Oral Investig ; 28(4): 240, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570397

RESUMEN

OBJECTIVES: Thermoplastic polymers show alteration in their mechanical properties after thermoforming on a dental model. The purpose of this in-vitro study was to evaluate the tensile strength of different thermoplastic polymer sheets thermoformed on a pre-treatment (moderate crowding) and post-treatment (well-aligned) maxillary model of a patient. MATERIALS AND METHODS: Forty maxillary models (Twenty Pre-treatment & twenty Post-treatment of uniform dimension) were made by duplicating them using alginate Hydrogum 5 (Zhermack). Samples were then divided into eight groups of 5 samples each. The thermoplastic sheets Imprelon® (Scheu-Dent), AVAC R® (Jaypee), Placa Crystal® (BioART), EZ-VAC® (3A Medes)-1.0 mm thick were thermoformed on these models respectively. The sample was retrieved using ceramic bur mounted on a straight hand-piece and subjected for testing using TINIUS Olsen 10ST micro universal testing machine and recorded. RESULTS: There was no statistically significant difference (P > .05) in tensile strength of thermoformed thermoplastic polymer sheets between pre-treatment and post-treatment maxillary model. Tensile strength of EZ-VAC (3A Medes) showed higher variation between pre-treatment and post-treatment maxillary model though it was found to be statistically insignificant (P > .05). Significant difference (P < .05) was seen between groups when they were compared separately among pre-treatment and post-treatment models. CONCLUSION: Placa Crystal (BioART) among the pre-treatment group, EZ - VAC (3A Medes) among the post-treatment group, showed highest tensile strength. CLINICAL RELEVANCE: Results of the study highlights the necessity to test materials in conditions which stands in accordance with the clinical scenario to a considerable extent and also emphasizes the need for further study in aligner.


Asunto(s)
Cerámica , Polímeros , Humanos , Resistencia a la Tracción , Polímeros/química , Ensayo de Materiales
6.
Angle Orthod ; 94(3): 346-352, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639456

RESUMEN

OBJECTIVES: To investigate the dimensional stability of various 3D-printed models derived from resin and plant-based, biodegradable plastics (PLA) under specific storage conditions for a period of up to 21 weeks. MATERIALS AND METHODS: Four different printing materials, including Draft V2, study model 2, and Ortho model OD01 resins as well as PLA mineral, were evaluated over a 21-week period. Eighty 3D-printed models were divided equally into two groups, with one group stored in darkness and the other exposed to daylight. All models were stored at a constant room temperature (20°C). Measurements were taken at 7-week intervals using the Inspect 3D module in OnyxCeph software (Image Instruments GmbH, Chemnitz, Germany). RESULTS: Dimensional change was noted for all of the models with shrinkage of up to 0.26 mm over the study period. Most contraction occured from baseline to T1, although significant further contraction also arose from T1 to T2 (P < .001) and T1 to T3 (P < .001). More shrinkage was observed when exposed to daylight overall and for each resin type (P < .01). The least shrinkage was noted with Ortho model OD01 resin (0.16 mm, SD = 0.06), and the highest level of shrinkage was observed for Draft V2 resin (0.23 mm, SD = 0.06; P < .001). CONCLUSIONS: Shrinkage of 3D-printed models is pervasive, arising regardless of the material used (PLA or resin) and being independent of the brand or storage conditions. Consequently, immediate utilization of 3D printing for orthodontic appliance purposes may be preferable, with prolonged storage risking the manufacture of inaccurate orthodontic retainers and appliances.


Asunto(s)
Retenedores Ortodóncicos , Impresión Tridimensional , Programas Informáticos , Poliésteres , Ensayo de Materiales
7.
BMC Oral Health ; 24(1): 472, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641578

RESUMEN

PURPOSE: The aim of the current study was to evaluate the effect of simulated gastric acid on the color and translucency of different indirect restorative materials. MATERIALS AND METHODS: A total of 36 disc-shaped samples were cut by using an isomet saw and divided into four equal groups (n = 9) according to the material type: Group Z: translucent zirconia (Ceramill® Zolid ht.+ preshade, Amann Girrbach, Koblach, Austria); Group E: lithium disilicate (IPS e.max CAD, Ivoclar Vivadent AG, Schaan, Liechtenstein); Group C: resin nanoceramic (Cerasmart, GC, Tokyo, Japan); Group P: polyether ether ketone (PEEK) (Bettin Zirconia Dentale Italy) veneered with indirect high impact polymer composite (HIPC) (breCAM HIPC, Bredent GmbH & Co. KG, Germany). The samples were immersed in simulated gastric acid (HCl, pH 1.2) for 96 hours at 37 °C in an incubator. The color change (ΔE00) and translucency (RTP00) were measured every 9.6 hours (one-year clinical simulation) of immersion in simulated gastric acid. RESULTS: For color change (∆E00) and translucency (RTP00) among the tested materials, there was a highly statistically significant difference (P < 0.001) after every year of follow-up. The color change in both Z and G groups was the lowest after 1 year of acid immersion, followed by that in group H, and the highest change in color was recorded in group P. CONCLUSION: High translucent zirconia is recommended in patients who are concerned about esthetic, especially with acidic oral environment.


Asunto(s)
Cerámica , Materiales Dentales , Humanos , Ensayo de Materiales , Circonio , Propiedades de Superficie , Color , Diseño Asistido por Computadora
8.
Skin Res Technol ; 30(4): e13687, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566505

RESUMEN

BACKGROUND: The physical appearance of an individual plays a primary role as it influences the opinion of the viewer. For this reason, orthodontic therapy to improve perceived aesthetics is in high demand among patients. This factor, combined with the increase in the number of non-invasive facial aesthetic treatments, has led to the need to understand potential risk factors in the application of medical devices to the perioral skin in patients with fixed orthodontic appliances. The aim of this study was to evaluate in vitro heating of the orthodontic bracket following electromagnetic fields and negative pressure (V-EMF) used as an anti-aging treatment. METHODS: Two different types of titanium alloy wires, one made of "beta-Titanium" alloy and the other "Ni-Ti" (DW Lingual Systems GmbH-Bad Essen-Germany) were used. The orthodontic wires and brackets mounted on a resin mouth were covered with porcine muscle tissue, then subjected to anti-aging therapy with a Bi-one LifeTouchTherapy medical device (Expo Italia Srl-Florence-Italy) which generates a combination of vacuum and electromagnetic fields (V-EMF) already adopted for antiaging therapy. During administration of the therapy, the orthodontic brackets and porcine tissue were thermally monitored using a Wavetek Materman TMD90 thermal probe (Willtek Communications GmbH-Germany). In total 20 orthodontic mouths were used, 10 with Beta Titanium wires and 10 with Nickel Titanium wires. RESULTS: A temperature increase of about 1°C was recorded in each group. The outcome of the present research shows that the absolute temperatures measured on orthodontic appliances, which, despite having a slightly different curve, both show an increase in temperature of 1.1°C at the end of the session, thus falling well within the safety range of 2°C as specified by the standard CENELEC EN 45502-1. Therefore, V-EMF therapy can be considered safe for the entire dental system and for metal prostheses, which tend to heat up at most as much as biological tissue (+0.9°C/1.1°C vs. 1.1°C/1.1°C). CONCLUSION: In conclusion, anti-aging therapy with V-EMF causes a thermal increase on orthodontic brackets that is not harmful to pulp health.


Asunto(s)
Campos Electromagnéticos , Níquel , Titanio , Humanos , Animales , Porcinos , Vacio , Calefacción , Alambres para Ortodoncia , Aleaciones , Ensayo de Materiales
9.
Sci Rep ; 14(1): 7959, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575608

RESUMEN

Cranial reconstructions are essential for restoring both function and aesthetics in patients with craniofacial deformities or traumatic injuries. Titanium prostheses have gained popularity due to their biocompatibility, strength, and corrosion resistance. The use of Superplastic Forming (SPF) and Single Point Incremental Forming (SPIF) techniques to create titanium prostheses, specifically designed for cranial reconstructions was investigated in an ovine model through microtomographic and histomorphometric analyses. The results obtained from the explanted specimens revealed significant variations in bone volume, trabecular thickness, spacing, and number across different regions of interest (VOIs or ROIs). Those regions next to the center of the cranial defect exhibited the most immature bone, characterized by higher porosity, decreased trabecular thickness, and wider trabecular spacing. Dynamic histomorphometry demonstrated differences in the mineralizing surface to bone surface ratio (MS/BS) and mineral apposition rate (MAR) depending on the timing of fluorochrome administration. A layer of connective tissue separated the prosthesis and the bone tissue. Overall, the study provided validation for the use of cranial prostheses made using SPF and SPIF techniques, offering insights into the processes of bone formation and remodeling in the implanted ovine model.


Asunto(s)
Miembros Artificiales , Titanio , Ovinos , Animales , Humanos , Prótesis e Implantes , Implantación de Prótesis , Osteogénesis , Oveja Doméstica , Cráneo/diagnóstico por imagen , Aleaciones , Ensayo de Materiales , Propiedades de Superficie
10.
Biomed Res Int ; 2024: 7720286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577705

RESUMEN

Background: Zirconia, with its excellent mechanical properties, has become a popular choice for esthetic and durable restorations due to the increasing demand of patients. It has overcome most of the limitations of all ceramic restorations. However, bonding to zirconia remains a challenge. Objectives: This study is aimed at assessing the effect of surface treatment with alkaline agents at two different temperatures on microshear bond strength (µSBS) of zirconia to composite resin. Materials and Methods: This in vitro, experimental study was conducted on zirconia blocks measuring 2 × 4 × 8 mm. The blocks were sandblasted with alumina powder and randomly assigned to 5 groups (n = 16 each). The blocks in groups 1 and 2 underwent surface treatment with sodium hydroxide (NaOH) and groups 3 and 4 with zirconium hydroxide (Zr(OH)4) at room temperature and 70°C. Group 5 served as the control group and did not receive any surface treatment. After the application of bonding agent and its light-curing, composite cylinders in plastic tubes were bonded to the surface of each block and cured. After incubation, they underwent µSBS test. Data were analyzed by one-way ANOVA and Tukey's test (alpha = 0.05). Results: The µSBS was significantly higher in all intervention groups than that in the control group (P < 0.05). The µSBS in Zr(OH)4 groups was significantly higher than that in NaOH groups (P < 0.05). The mean µSBS of heated groups was slightly, but not significantly, higher than the corresponding room temperature groups (P > 0.05). Conclusion: Surface treatment of zirconia with NaOH and Zr(OH)4 alkaline agents can increase its µSBS to composite resin; Zr(OH)4 was significantly more effective than NAOH for this purpose, but heating did not have a significant effect on µSBS.


Asunto(s)
Resinas Compuestas , Recubrimiento Dental Adhesivo , Humanos , Resinas Compuestas/química , Propiedades de Superficie , Cementos de Resina/química , Temperatura , Hidróxido de Sodio , Ensayo de Materiales , Circonio/química , Cerámica/química , Resistencia al Corte
11.
BMC Oral Health ; 24(1): 423, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580948

RESUMEN

BACKGROUND: To evaluate the physical properties of bioactive glass-modified universal multimode adhesive and its micro-tensile bond strength (µTBS) to artificially induced caries-affected dentin. METHODS: All bond universal adhesive was used in the study. Specimens were divided into 2 main groups: control unmodified adhesive and 5 wt% BAG modified adhesive. The degree of conversion, pH, bioactivity, and viscosity of the adhesives were tested with n = 5 for each test. Micro-tensile bond strength evaluation was done in etch & rinse (ER) and selective-etch (SE) modes, where 24 human molar teeth were used (n = 3), 12 teeth for immediate bond strength, and the other 12 were tested after 6 months of storage in simulated body fluid (SBF). RESULTS: No significant difference was found between the control and the 5wt% BAG groups regarding the degree of conversion (61.01 ± 0.43 and 60.44 ± 0.61 respectively) and the viscosity (109.77 ± 22.3 and 124.3 ± 9.92 respectively). The control group revealed significantly lower pH values than the 5wt% BAG group (3.16 ± 0.5 and 4.26 ± 0.09 respectively). Immediate bond strength results revealed that the 5wt% BAG in the ER mode had the highest bond strength followed by the control group in the ER mode (44.16 ± 7.53 and 44.00 ± 7.96 respectively). SE groups showed that the immediate strength of the 5wt% BAG group was higher than the control group (42.09 ± 6.02 and 39.29 ± 6.64 respectively). After 6 months of storage, bond strength results revealed a decrease in bond strength values for the control groups but not for the 5wt% BAG in both application modes. CONCLUSIONS: The incorporation of BAG (5wt%) improved the universal adhesive micro-tensile bond strength and bond durability for both adhesive application modes without affecting its degree of conversion or viscosity.


Asunto(s)
Recubrimiento Dental Adhesivo , Caries Dental , Humanos , Cementos Dentales , Recubrimientos Dentinarios/química , Cementos de Resina/química , Susceptibilidad a Caries Dentarias , Ensayo de Materiales , Resistencia a la Tracción , Dentina
12.
Shanghai Kou Qiang Yi Xue ; 33(1): 36-39, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583022

RESUMEN

PURPOSE: To study the effect of different cleaning methods on the shear bond strength of self-adhesive resin cement to saliva-contaminated high translucency zirconia and surface wettability. METHODS: Eighty zirconia specimens were randomly divided into 5 groups (n=16), i.e., control group(not contaminated), 75% ethanol group,cleaning paste group,airborne-particle abrasion group, and atmospheric pressure cold plasma group. The contact angles was measured, shear bond strength were examined, and fracture types were determined. SPSS 26.0 software package was used for statistical analysis of the data. RESULTS: The atmospheric pressure cold plasma group produced the lowest contact angle(P<0.05). The shear bond strength of the airborne-particle abrasion group, the cleaning paste group and the atmospheric pressure cold plasma group respectively were similar to the control group without significant difference(P>0.05), while those were significantly higher than 75% ethanol group(P<0.05). The mixed fracture mode of the atmospheric pressure cold plasma group evidently increased. CONCLUSIONS: Airborne-particle abrasion, cleaning paste and atmospheric pressure cold plasma overcome the effects of saliva contamination, producing the shear bond strength to zirconia similar to the control group. The atmospheric pressure cold plasma improves hydrophilicity of high translucency zirconia significantly.


Asunto(s)
Recubrimiento Dental Adhesivo , Gases em Plasma , Humectabilidad , Propiedades de Superficie , Cementos de Resina , Circonio/química , Etanol , Ensayo de Materiales , Resistencia al Corte , Análisis del Estrés Dental
13.
J Adhes Dent ; 26(1): 93-102, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38602286

RESUMEN

PURPOSE: To investigate the influence of contamination and different cleaning methods on resin bonding to cobalt-chro- mium (CoCr) alloy disks. MATERIALS AND METHODS: A total of 160 CoCr disks were divided into 3 groups. The first group (N = 64) was air abraded with alumina particles and contaminated with a silicone disclosing agent and saliva; the second group (N = 64) was air abraded but not contaminated; the third group (N = 32) was neither air abraded nor contaminated. The first two groups were di- vided into 4 subgroups (N = 16) according to the cleaning method: ultrasonic bath in 99% isopropanol, use of a cleaning suspension of zirconium oxide particles, use of a cleaning suspension based on 10-MDP salt, and treatment with atmo- spheric plasma. The third group was divided into 2 subgroups (N = 16): treatment with atmospheric plasma and no treat- ment. All CoCr specimens were bonded to plexiglas tubes filled with a bonding resin that contained phosphate monomer. Tensile bond strength (TBS) was examined by tensile testing after 3 and 150 days of water storage plus 37,500 thermal cy- cles (N = 8). RESULTS: After contamination, TBS was significantly reduced after 150 days of water storage. Groups without air abrasion showed initially low TBS and debonded spontaneously after 150 days of water storage. CONCLUSION: None of the cleaning methods was able to remove saliva and silicone disclosing agent on CoCr-alloy sur- faces. Surface activation by plasma treatment has no long-term effect on the bond strength.


Asunto(s)
Resinas Compuestas , Recubrimiento Dental Adhesivo , Cementos de Resina , Aleaciones , Abrasión Dental por Aire , Propiedades de Superficie , Agua , Resistencia a la Tracción , Siliconas , Ensayo de Materiales , Circonio , Análisis del Estrés Dental
14.
Biomed Mater ; 19(3)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38604155

RESUMEN

The standard surgical procedure for abdominal hernia repair with conventional prosthetic mesh still results in a high recurrence rate. In the present study, we propose a fibroblast matrix implant (FMI), which is a three-dimensional (3D) poly-L-lactic acid scaffold coated with collagen (matrix) and seeded with fibroblasts, as an alternative mesh for hernia repair. The matrix was seeded with fibroblasts (cellularized) and treated with a conditioned medium (CM) of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSC). Fibroblast proliferation and function were assessed and compared between treated with CM hUC-MSC and untreated group, 24 h after seeding onto the matrix (n= 3). To study the matricesin vivo,the hernia was surgically created on male Sprague Dawley rats and repaired with four different grafts (n= 3), including a commercial mesh (mesh group), a matrix without cells (cell-free group), a matrix seeded with fibroblasts (FMI group), and a matrix seeded with fibroblasts and cultured in medium treated with 1% CM hUC-MSC (FMI-CM group).In vitroexamination showed that the fibroblasts' proliferation on the matrices (treated group) did not differ significantly compared to the untreated group. CM hUC-MSC was able to promote the collagen synthesis of the fibroblasts, resulting in a higher collagen concentration compared to the untreated group. Furthermore, thein vivostudy showed that the matrices allowed fibroblast growth and supported cell functionality for at least 1 month after implantation. The highest number of fibroblasts was observed in the FMI group at the 14 d endpoint, but at the 28 d endpoint, the FMI-CM group had the highest. Collagen deposition area and neovascularization at the implantation site were observed in all groups without any significant difference between the groups. FMI combined with CM hUC-MSC may serve as a better option for hernia repair, providing additional reinforcement which in turn should reduce hernia recurrence.


Asunto(s)
Proliferación Celular , Colágeno , Fibroblastos , Herniorrafia , Hernia Incisional , Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Mallas Quirúrgicas , Andamios del Tejido , Animales , Fibroblastos/metabolismo , Ratas , Masculino , Humanos , Células Madre Mesenquimatosas/citología , Herniorrafia/métodos , Herniorrafia/instrumentación , Colágeno/química , Andamios del Tejido/química , Hernia Incisional/cirugía , Poliésteres/química , Ensayo de Materiales , Medios de Cultivo Condicionados/farmacología , Materiales Biocompatibles/química , Células Cultivadas , Hernia Abdominal/cirugía , Cordón Umbilical/citología
15.
Biomed Res Int ; 2024: 6670159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606199

RESUMEN

Objective: This research study investigated the effect of new decontamination protocols on the bonding capacity of saliva-contaminated monolithic zirconia (MZ) ceramics cemented with two different monomer-containing self-adhesive resin cements. Materials and Methods: Standardized tooth preparations (4 mm. axial height) were performed for eighty human maxillary premolars under constant water cooling system. Eighty monolithic zirconia crowns (Whitepeaks Supreme Monolith) (n = 8/10 groups) were manufactured by CAD-CAM. Specimens were kept in the artificial saliva at pH = 7.3 for 1 minute at 37°C except control groups. The specimens have not been prealumina blasted and grouped according to cleaning methods and resin cements: control groups (C) (no saliva contamination + GPDM + 4-META (N) (CN) and 10-MDP (M) containing resin cement (CM), alumina blasted (AL) + GPDM + 4-META (ALN) and 10-MDP containing resin cement (ALM), zirconium oxide containing universal cleaning agent (IC) applied + GPDM + 4-META (N) (ICN) and 10-MDP containing resin cement (ICM), pumice (P) applied + GPDM + 4-META (PN) and 10-MDP containing resin cement (PM), and air-water spray (AW) applied + GPDM + 4-META (AWN) and 10-MDP containing resin cement (AWM)). Monobond Plus was applied to all surfaces for 40 seconds before cementation. The thermal cycle was applied at 5,000 cycles after cementation. The crowns were tested in tensile mode at a speed of 1 mm/min. The mode of failure was recorded. SEM examinations were carried out at different magnifications. Data were analyzed using rank-based Kruskal-Wallis and Mann-Whitney tests. Results: No significant differences were found between the surface treatments and between the two types of resin cements. Interaction effects between surface treatments and resin cements were found to be significant by two-way ANOVA analysis. ICM group resulted in significantly better bond strength results compared with CN. ICM was found to result in better bond strength results compared with PM. The combination of universal cleaning agent and 10-MDP containing resin cement had significantly the highest cementation bond strength values. The increasing order of mean tensile bond strength values of decontamination protocols was C < AW < P < AL < IC. The mean tensile bond strength of 10-MDP containing resin cement was slightly higher than GPDM + 4-META containing resin cement. Conclusions: Universal cleaning agents can be preferred as an efficient cleaning method with 10-MDP-containing cement after saliva contamination for better adhesive bond strength of 4 mm crown preparation height of monolithic zirconia ceramics.


Asunto(s)
Recubrimiento Dental Adhesivo , Metacrilatos , Cementos de Resina , Humanos , Cementos de Resina/química , Saliva , Descontaminación , Ensayo de Materiales , Circonio/química , Cerámica/química , Agua/química , Resistencia al Corte , Propiedades de Superficie , Análisis del Estrés Dental
16.
BMC Oral Health ; 24(1): 457, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622649

RESUMEN

BACKGROUND: Self-glazed zirconia (SZ) restorations are made by a novel additive three-dimensional gel deposition approach, which are suitable for a straightforward completely digital workflow. SZ has recently been used as minimally invasive veneer, but its clinical outcomes have not been clarified yet. This study aimed to evaluate the preliminary clinical outcomes of SZ veneers compared with the widely used lithium disilicate glass-ceramic veneers made by either pressing (PG) or milling (MG) process. METHODS: Fifty-six patients treated with SZ, PG, and MG veneers by 2 specialists between June 2018 and October 2022 were identified. Patients were recalled for follow-up at least 1 year after restoration. Clinical outcomes were assessed by 2 independent evaluators according to the modified United States Public Health Service (USPHS) criteria. Overall patient satisfaction was assessed using visual analogue scale (VAS), and analyzed by one-way ANOVA. Chi-square test was applied to compare the difference in the success and survival rates among the 3 groups. RESULTS: A total of 51 patients restored with 45 SZ, 40 PG, and 41 MG veneers completed the study, with a patient dropout rate of 8.9%. Mean and standard deviation of follow-up period was 35.0 ± 14.7 months. All restorations performed well at baseline, except for 2 SZ veneers with mismatched color (rated Bravo). During follow-up, marginal discrepancy (rated Bravo) was found in 4 MG veneers and 1 PG veneer, and partially fractured (rated Charlie) was found in another 2 PG veneers. The survival rate of SZ, PG, and MG veneers was 100%, 95%, and 100%, with a success rate of 95.56%, 92.50%, and 90.24%, respectively, none of which were significantly different (p = 0.099 and 0.628, respectively). The mean VAS score of SZ, PG, and MG was 95.00 ± 1.57, 93.93 ± 2.40, and 94.89 ± 2.00 respectively, without significant difference (p > 0.05). CONCLUSION: SZ veneers exhibited comparable preliminary clinical outcomes to PG and MG veneers, which could be considered as a feasible option for minimally invasive restorative treatment.


Asunto(s)
Fracaso de la Restauración Dental , Coronas con Frente Estético , Nitrilos , Circonio , Humanos , Estudios Retrospectivos , Cerámica , Ensayo de Materiales , Diseño Asistido por Computadora
17.
J Dent ; 144: 104987, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580056

RESUMEN

OBJECTIVES: To evaluate whether post-milling firing and material type affect the fabrication trueness and internal fit of lithium disilicate crowns. METHODS: A prefabricated cobalt chromium abutment was digitized to design a mandibular right first molar crown. This design file was used to fabricate crowns from different lithium disilicate ceramics (nano-lithium disilicate (AM), fully crystallized lithium disilicate (IN), advanced lithium disilicate (TS), and lithium disilicate (EX)) (n = 10). Crowns, the abutment, and the crowns when seated on the abutment were digitized by using an intraoral scanner. Fabrication trueness was assessed by using the root mean square method, while the internal fit was evaluated according to the triple scan method. These processes were repeated after the post-milling firing of AM, TS, and EX. Paired samples t-tests were used to analyze the effect of post-milling firing within AM, TS, and EX, while all materials were compared with 1-way analysis of variance and Tukey HSD tests (α = 0.05). RESULTS: Post-milling firing reduced the surface deviations and internal gap of AM and EX (P ≤ 0.014). AM mostly had higher deviations and internal gaps than other materials (P ≤ 0.030). CONCLUSIONS: Post-milling firing increased the trueness and internal fit of tested nano-lithium disilicate and lithium disilicate ceramics. Nano-lithium disilicate mostly had lower trueness and higher internal gap; however, the maximum meaningful differences among tested materials were small. Therefore, the adjustment duration and clinical fit of tested crowns may be similar. CLINICAL SIGNIFICANCE: Tested lithium disilicate ceramics may be suitable alternatives to one another in terms of fabrication trueness and internal fit, considering the small differences in measured deviations and internal gaps.


Asunto(s)
Diseño Asistido por Computadora , Coronas , Porcelana Dental , Diseño de Prótesis Dental , Ensayo de Materiales , Porcelana Dental/química , Humanos , Pilares Dentales , Cerámica/química , Propiedades de Superficie , Materiales Dentales/química , Adaptación Marginal Dental , Aleaciones de Cromo/química
18.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 345-351, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38595256

RESUMEN

OBJECTIVE: To analyze the influence of forming direction on the surface characteristics, elastic modulus, bending strength and fracture toughness of printed parts and the relationship between forming direction and force direction, and to provide scientific basis and guidance for the clinical application of oral denture base resin materials. METHODS: The 3D printing technology was used to print denture base resin samples. The shape and size of the samples referred to the current standard for testing conventional denture base materials. The samples used for physical performance testing were cylindrical (with a diameter of 15 mm and a thickness of 1 mm) and printed at different angles along the Z axis (0°, 45°, 90°). Scanning electron microscope was used to observe the microscopic topography of the different samples. The color stability of different samples was observed by color stabilizer. The surface roughness of the samples was analyzed by using surface roughness tester. The Vickers hardness was measured to analyze the hardness of the samples. The samples used for mechanical performance testing were rectangular (elastic modulus and bending strength: A length of 64 mm, a width of 10 mm, and a height of 3.3 mm; fracture toughness: A length of 39 mm, a width of 8 mm, and a height of 4 mm), divided into two groups: W group and H group. The W group was printed from the bottom up along the Z axis with the length × width as the bottom surface parallel to the X, Y axis plane, while the H group printed from the bottom up along the Z axis with the length × height as the bottom surface parallel to the X, Y axis plane. The forming angles of both groups were equally divided into 0°, 45°, and 90°. The elastic modulus, bending strength and fracture toughness of different samples were studied through universal mechanical testing machine. SPSS 22.0 software was used for statistical analysis. RESULTS: The microscopic topography and roughness of different samples were closely related to the printing direction, with significant differences between the 0°, 45°, and 90° specimens. The 0° specimens had the smoothest surface (roughness < 1 µm). The surface of the 45° specimen was the roughest (roughness>3 µm). The microhardness of the 0° sample was the best [(196.13±0.20) MPa], with a significant difference compared with the 90° sample [(186.62±4.81) MPa, P < 0.05]. The mechanical properties of different samples were also closely related to the printing direction. The elastic modulus, bending strength, and fracture toughness of the 45° samples in the W group were the highest compared with the other groups. The results of elastic modulus showed that in the H group, the 45° specimens had the highest elastic mo-dulus, which was significantly different from the 0° and 90° specimens (P < 0.05). The elastic modulus of 0° and 45° specimens in the W group were higher than those in 90° specimens (P < 0.05). The bending strength results showed that there was no significant difference between the specimens from dif-ferent angles in the H group. The bending strength of the 90° specimens in the W group was the smallest, and there was a significant difference between 90° and the 0° and 45° specimens (P < 0.05); And the bendind strength of the 0° and 45° specimens in the W group was significantly higher than that of the 0° and 45° specimens in the H group (P < 0.05). The fracture toughness results showed that the fracture toughness of the H group specimens was lower than 1.9 MPa m1/2, which was specified in the denture base standard. The 45° samples in the W group were the highest, with significant differences compared with the 0° and 90° samples (P < 0.05). And the 90° samples of the W group specimens were lower than 1.9 MPa m1/2. And the fracture toughness of the 45° specimen in the W group was significantly higher than that of all the specimens in the H group (P < 0.05). CONCLUSION: The 0° samples had relatively better physical properties. The 45° samples had the best mechanical properties. But the fracture toughness of specimens (H group and 90° samples of W group) did not yet meet clinical requirements. That indicated that the characteristics of the 3D printing denture base resin were affected by the printing direction. Only when the performance of the printed samples in all directions met the minimum requirements of the standard, they could be used in clinical practice.


Asunto(s)
Impresión Tridimensional , Prostodoncia , Ensayo de Materiales , Propiedades de Superficie , Resistencia Flexional , Bases para Dentadura
19.
ACS Appl Mater Interfaces ; 16(15): 18503-18521, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38570902

RESUMEN

Biomaterials can induce an inflammatory response in surrounding tissues after implantation, generating and releasing reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The excessive accumulation of ROS may create a microenvironment with high levels of oxidative stress (OS), which subsequently accelerates the degradation of the passive film on the surface of titanium (Ti) alloys and affects their biological activity. The immunomodulatory role of macrophages in biomaterial osteogenesis under OS is unknown. This study aimed to explore the corrosion behavior and bone formation of Ti implants under an OS microenvironment. In this study, the corrosion resistance and osteoinduction capabilities in normal and OS conditions of the Ti-24Nb-4Zr-8Sn (wt %, Ti2448) were assessed. Electrochemical impedance spectroscopy analysis indicated that the Ti2448 alloy exhibited superior corrosion resistance on exposure to excessive ROS compared to the Ti-6Al-4V (TC4) alloy. This can be attributed to the formation of the TiO2 and Nb2O5 passive films, which mitigated the adverse effects of OS. In vitro MC3T3-E1 cell experiments revealed that the Ti2448 alloy exhibited good biocompatibility in the OS microenvironment, whereas the osteogenic differentiation level was comparable to that of the TC4 alloy. The Ti2448 alloy significantly alleviates intercellular ROS levels, inducing a higher proportion of M2 phenotypes (52.7%) under OS. Ti2448 alloy significantly promoted the expression of the anti-inflammatory cytokine, interleukin 10 (IL-10), and osteoblast-related cytokines, bone morphogenetic protein 2 (BMP-2), which relatively increased by 26.9 and 31.4%, respectively, compared to TC4 alloy. The Ti2448 alloy provides a favorable osteoimmune environment and significantly promotes the proliferation and differentiation of osteoblasts in vitro compared to the TC4 alloy. Ultimately, the Ti2448 alloy demonstrated excellent corrosion resistance and immunomodulatory properties in an OS microenvironment, providing valuable insights into potential clinical applications as implants to repair bone tissue defects.


Asunto(s)
Osteogénesis , Titanio , Corrosión , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Materiales Biocompatibles , Aleaciones/química , Estrés Oxidativo , Propiedades de Superficie , Ensayo de Materiales
20.
J Mech Behav Biomed Mater ; 154: 106510, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593720

RESUMEN

Stress corrosion cracking (SCC) can be a crucial problem in applying rare earth (RE) Magnesium alloys in environments where mechanical loads and electrochemical driven degradation processes interact. It has been proven already that the SCC behavior is associated with microstructural features, compositions, loading conditions, and corrosive media, especially in-vivo. However, it is still unclear when and how mechanisms acting on multiple scales and respective system descriptors predictable contribute to SCC for the wide set of existing Mg alloys. In the present work, suitable literature data along SCC of Mg alloys has been analyzed to enable the development of a reliable SCC model for MgGd binary alloys. Pearson correlation coefficient and linear fitting are utilized to describe the contribution of selected parameters to corrosion and mechanical properties. Based on our data analysis, a parameter ranking is obtained, providing information on the SCC impact with regard to ultimate tensile strength (UTS) and fracture elongation of respective materials. According to the analyzed data, SCC susceptibility can be grouped and mapped onto Ashby type diagrams for UTS and elongation of respective base materials tested in air and in corrosive media. The analysis reveals the effect of secondary phase content as a crucial materials descriptor for our analyzed materials and enables better understanding towards SCC model development for Mg-5Gd alloy based implant.


Asunto(s)
Aleaciones , Cáusticos , Ensayo de Materiales , Aleaciones/química , Corrosión , Análisis de Datos , Materiales Biocompatibles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...